Theory of weakly nonlinear self-sustained detonations


We propose a theory of weakly nonlinear multidimensional self-sustained detonations based on asymptotic analysis of the reactive compressible Navier–Stokes equations. We show that these equations can be reduced to a model consisting of a forced unsteady small-disturbance transonic equation and a rate equation for the heat release. In one spatial dimension, the model simplifies to a forced Burgers equation. Through analysis, numerical calculations and comparison with the reactive Euler equations, the model is demonstrated to capture such essential dynamical characteristics of detonations as the steady-state structure, the linear stability spectrum, the period-doubling sequence of bifurcations and chaos in one-dimensional detonations and cellular structures in multidimensional detonations.

L. M. Faria, A. R. Kasimov, R. R. Rosales, Theory of weakly nonlinear self-sustained detonations, Journal of Fluid Mechanics, 2015.

Cellular detonation